import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import mean_squared_error, r2_score from sklearn.impute import SimpleImputer # Load dataset df_em = pd.read_csv('employee_train.csv') # Load the dataset # Define features and target X = df_em[['Age','NumCompaniesWorked','TrainingTimesLastYear','StandardHours']] #numerical y = df_em['MonthlyIncome'] ##numerical # Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Apply KNN regression knn_regressor = KNeighborsRegressor(n_neighbors=3) knn_regressor.fit(X_train, y_train) predictions = knn_regressor.predict(X_test) # Evaluate the model print('R2 Score:', knn_regressor.score(X_test, y_test))
KNN regression Python
berikut contoh penggunaan dataset employee dengan beberapa fitur