masih relevan kah 2025 adsense lagi blog

 

import cv2
import numpy as np
import requests
from urllib.request import urlopen
from io import BytesIO
from IPython.display import Image, display
# Function to detect dominant colors in an image
def detect_colors(image_url, num_colors=5):
# Download the image from the URL
response = urlopen(image_url)
image_data = BytesIO(response.read())
image = cv2.imdecode(np.asarray(bytearray(image_data.read()), dtype=np.uint8), -1)
# Convert image to RGB
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Reshape the image to a list of pixels
pixels = image_rgb.reshape((-1, 3))
# Perform k-means clustering to find dominant colors
k = num_colors
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 200, 0.2)
_, labels, centers = cv2.kmeans(pixels.astype(np.float32), k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# Convert the color centers to uint8
centers = np.uint8(centers)
# Sort the colors by frequency
unique_labels, counts = np.unique(labels, return_counts=True)
color_counts = list(zip(unique_labels, counts, centers))
color_counts.sort(key=lambda x: x[1], reverse=True)
# Extract the dominant colors
dominant_colors = [tuple(color[2]) for color in color_counts]
return dominant_colors
# Input image URL
image_url = input("Enter the image URL: ")
# Detect dominant colors
num_colors = 5 # You can adjust this number as needed
dominant_colors = detect_colors(image_url, num_colors)
# Display the dominant colors
print("Dominant Colors:")
for i, color in enumerate(dominant_colors, start=1):
print(f"Color {i}: RGB {color}")
# Display the image
display(Image(url=image_url))
view raw opencv.py hosted with ❤ by GitHub

Related Posts

There is no other posts in this category.
Subscribe Our Newsletter